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Does flow shear suppress turbulence in nonionized flows? *
P. W. Terry†
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The suppression of turbulence by mean flow shear is shown to apply to nonionized flows as well as
plasmas. However, besides the criterion that the shearing rate exceed the turbulent decorrelation
rate, there are three additional conditions. These stipulate that the shear flow must be stable, that
turbulence must remain in the domain of flow shear for longer than an eddy turnover time, and that
the dynamics should be two dimensional~2D!. In nonionized flows, these conditions are not
typically satisfied, explaining why shear suppression is not a familiar phenomenon in
hydrodynamics. The three conditions are discussed in the context of nonionized and plasma flows.
Two examples of suppression in nonionized flows are presented. One involves the formation of
coherent structures in 2D Navier–Stokes turbulence and the other involves large-scale turbulence in
the stratosphere. ©2000 American Institute of Physics.@S1070-664X~00!91805-6#
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I. INTRODUCTION

The suppression of turbulence and turbulent transpor
E3B flow shear in magnetically confined plasmas is
widespread that it has been called universal.1,2 This phenom-
enon is regarded as the central engine of the H-mode~high
confinement mode!, an edge transport barrier observed in
auxiliary heated tokamaks, in stellarators, and in mirro
Transport barriers associated withE3B flow shear have also
been detected in the reversed field pinch, and are believe
apply to theZ pinch. The phenomenon is invariant with r
spect to plasma location, operating in internal and e
transport barriers alike. Implicit in these observations, a
explicitly demonstrated in numerous model calculations a
simulations, suppression of turbulence byE3B flow shear
occurs for many different types of turbulence and instab
ties. Given this quasiuniversal character, it is striking t
this phenomenon is not a familiar feature of nonioniz
flows. Scouring the literature of nonionized flows, it is po
sible to identify isolated instances where suppression of
bulence or fluctuations by flow shear appears to
operating;2 however, the physical mechanism has not be
identified in any case we have encountered.

Although the suppression of turbulence by flow shear
plasmas is a feature of theE3B velocity, a flow of charged
particles in an ionized plasma, there is ample reason to
pect that suppression of turbulence by flow shear ough
occur in nonionized fluids. The charge-independentE3B
velocity is identical for ions and electrons. As the univer
advector of fluctuations, it plays the same role in plas
continuum equations as the mean and turbulent flows of n
ionized continuum descriptions.3 A demonstration of sup-
pression of turbulence by flow shear in a nonionized flow

*Paper KT 1 2 Bull. Am. Phys. Soc.44, 190 ~1999!.
†Tutorial speaker.
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of interest for plasma physics. It would help validate t
basic mechanism of shear suppression in plasmas,4 enhanc-
ing confidence that plasma transport barriers indeed ope
through the suppression of turbulence by flow shear and
the confluence of other complicated effects intrinsic to co
fined plasmas~e.g., confining fields and geometries, multip
fluctuations and instabilities, nonambipolar particle loss
multiple states, bifurcations, etc.!. Lacking at present such a
experiment, it is essential for the credibility of the shear su
pression mechanism to determine why this mechanism is
familiar in hydrodynamics, what features of nonionize
flows are responsible, and the implications for fusion pl
mas.

We show that suppression of turbulence by flow shea
not a universal feature of all turbulent flows, but subject
several conditions~besides the condition that the she
straining rate exceed the turbulent decorrelation rate4!. These
conditions are often satisfied in fusion plasmas, but no
nonionized flows. The conditions are:~1! the sheared flow
must be stable,~2! turbulence must remain in the region o
strong flow shear for longer than a turbulent correlation tim
and ~3! two-dimensional~2D! flow is desirable for making
the phenomenon identifiable. When these conditions are
lated, turbulence is driven by shear instead of suppresse
is advected through the region of shear before the nonlin
ity can decorrelate fluctuations, and suppression of vortic
in certain directions is intermingled with amplification i
others.

Table I compares plasma flows with nonionized flows
the context of the conditions listed above. While there
nonionized flows that satisfy all three conditions, they a
exceptional. One case is large-scale flow in the atmosph
and oceans, known as quasigeostrophic flow. Suppressio
quasigeostrophic turbulence by flow shear has been obse
in simulations5,6 and is postulated to occur in th
3 © 2000 American Institute of Physics
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TABLE I. Situation in plasma and nonionized flows with regard to conditions for suppression.

Stability
~Shear flow must

be stable!

Long time
~Turbulence must remain

in shear region longer
than nonlinear time!

2D
~To avoid 3D

amplification of
vorticity!

Magnetic Usually stable: Yes: Yes:
fusion
plasmas

Magnetic shear
and rotation
stabilize flow shear

Flow shear is present
over entire path
of circulating flow

Strong ambient
magnetic field⇒
ki!k'

Non
ionized
flows

Often unstable: Frequently no: Almost never:
Wall flows, jets, wakes,
boundary layer flows,
flow past objects
are unstable

In strongly sheared
engineering flows,
turbulence is often in
shear region transiently
~e.g., wind tunnel with
local constriction!

Exception: large-scale
flows in atmosphere,
ocean~flow time scale
. Earth’s rotational
period!
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stratosphere.6 The situation where turbulence is advect
through a region of strong flow shear in a time shorter th
the eddy turnover time is quite common in nonionized flow
particularly engineering flows.7 A widely used technique
known as rapid distortion theory~RDT! can be employed to
trace out the fluid motions. We show that RDT is the sh
time, linear counterpart of the long time, turbulent decor
lation theory of Biglari, Diamond, and Terry~BDT!.4 In
three-dimensional~3D! flows, the suppression mechanis
applies only to vorticity perpendicular to both the directio
of the flow and the shear. Vorticity in either the direction
the flow or the shear is amplified through the process
vortex tube tilting and stretching. Since the fluctuation sp
trum is dominated by the most intense fluctuations, measu
signals and transport are generally dominated by the am
fied components of the turbulence and not the suppre
components. We show, however, that there is a 3D gene
zation of BDT that applies to all components of the vortic
under a Lagrangian construct known as the poten
vorticity.8 Since the potential vorticity also incorporates t
effects of compressibility, suppression is found to apply i
general way to compressible fluctuations in 3D.

This paper is organized as follows. In Sec. II we discu
each of the three conditions for suppression in the contex
both fusion plasmas and nonionized fluids. This section
cludes analyses of shear flow stability, an examination of
relationship of RDT to BDT, a description of vortex tub
stretching, and an analysis of potential vorticity suppress
Section III presents two cases in nonionized fluids wh
turbulence and transport are suppressed. One deals wit
formation of coherent structures in decaying 2D Navie
Stokes turbulence, and the other with quasigeostrophic
bulence. The conclusions are presented in Sec. IV.

II. REQUIREMENTS FOR SHEAR SUPPRESSION OF
TURBULENCE

A. Stable shear flow

Unstable shear flow routinely arises in nonionized flui
leading to the common association of shear flow with
driving of turbulence and not its suppression. Nonethele
 2007 to 128.104.165.60. Redistribution subject to AIP
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some shear flows are stable and thus capable of suppre
turbulence. Stability can be achieved under a variety
mechanisms, but general stability criteria are difficult to fo
mulate. Necessary and sufficient conditions depend on
precise details of spatial variations of flow, density, rotatio
etc., and are rarely available.9 Certain principles, however
can be enumerated. To this end, consider the Kelv
Helmholtz~KH! instability in a fluid of uniform density for a
continuous mean flow with a region of linear shear co
nected at opposite ends to regions of oppositely directed
form flow. Specifyingx andy as the directions of the mea
flow and shear, ū(y)5U0 for y.L; ū(y)52U0 for
y,2L; andū(y)5U0y/L for 2L,y,L. The instability is
governed by the Navier–Stokes equation. Taking the c
and assuming inviscid 2D perturbation~no variation in thez
direction!,

d

dt
@¹3~ ū1¹f̃3z!#

5S ]

]t
1ū~y!

]

]x
1¹f̃3z•¹ D¹2f̃2

d2ū

dy2

]f̃

]x
50, ~1!

where the fluctuating flowu5¹f̃3z is expressed in terms
of the stream functionf̃, andz¹2f̃5¹3u is the vorticity.
The last term on the left-hand side is required for instabili
i.e., the flow must have a second derivative. For the pres
example this is provided by the discontinuities in slope ax
56L. For fluctuations centered at the vorticity maximu
y50, the growth rate is

gk5U0kxS 1

kxL
212

1

2kx
2L2

sinh~2kxL !

exp~2kxL !
D 1/2

, ~2!

wherekx is the Fourier wave number in thex direction. The
growth rate is positive providedkxL,0.64, with the growth
rate maximum nearkxL50.4. Very long wavelengths (kxL
!0) are unstable, but the growth rate goes to zero askx goes
to zero. The instability conditionkxL,0.64 can be inter-
preted as allowing a perturbation withuy&U0 to sample
both signs of the curvatured2ū/dy2 occurring aty56L.
This permits the interchange of vortex filaments to relax
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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unstable shear profile. The requirement that flow curvat
change sign in the domain of instability, known as the R
leigh inflection point instability criterion, applies to arbitrar
profiles as anecessarycondition for instability.10 The flow
curvature is the gradient of vorticity for the above case, a
the inflection point criterion reflects a constraint imposed
invariance of vorticity.

Shear flow can be stabilized by rotation and buoyan
and can be incorporated into a generalized inflection p
criterion10 based on the gradient of a generalized vortic
known as the potential vorticity.8 In ionized fluids, the mag-
netic field also stabilizes shear flow. Because the magn
~Lorentz! and rotation~Coriolis! forces enter the momentum
equation isomorphically, the modification of the inflectio
point criterion by magnetic field is analogous to that of ro
tion. To consider rotation, we examine the flow of a pla
etary atmosphere. For fluid motions whose typical time sc
is longer than the planetary rotation period, motion is
with negligible variation in the vertical direction. The invar
ant generalized vorticity is the total vorticityQ̂, which in-
cludes the vertical component of the planetary vorticity~vor-
ticity of flow component corotating with the planet! and the
relative vorticity ~vorticity of motion in the rotating frame!.
Thus,

dQ̂

dt
5

d

dt
@2V sinu2¹2F#50, ~3!

whereV is the planetary rotation rate,u is the latitude, and
¹2F is the relative vorticity, expressed in terms of a stre
functionF and the Laplacian of displacements perpendicu
to the vertical. The advective derivatived/dt is with respect
to relative motion. We introduce a tangency plane in wh
to describe the 2D motion. The latitude of the tangency po
is u0 ,y5a(u2u0) is the northward displacement about t
tangency point,x is the eastward displacement, anda the
radius of the planet. The vertical component of the planet
vorticity is

2V sinu52V sinS u01
y

aD
52V sinu01

y

a
2V cosu01O~y2/a2!

[ f 01yb1O~y2/a2!, ~4!

valid for small displacements (y!a). Hereb is the lowest
order gradient in the tangency plane of planetary vortic
2V sinu. The tangency plane is referred to as ab-plane. The
relative vorticity is the curl of the relative flowu5¹F3z,
wherez is normal to theb-plane. If the stream function ha
mean and turbulent componentsF5F0(y)1f(x,y), the
flow u5ū(y)x1¹f3z has a mean zonal~east-west! com-
ponent with north-south shearū(y)5]F0 /]y and a turbu-
lent component¹f3z. Specifying these flows in the advec
tive derivative, Eq.~3! becomes

S ]

]t
1ū~y!

]

]x
1¹f3z•¹ D¹2f2

d2ū

dy2

]f

]x
1b

]f

]x
50. ~5!
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This is the equation for quasigeostrophic turbulence in
b-plane. Comparing with Eq.~1!, the stabilizing effect of
planetary rotation through theb term is evident in its cre-
ation of an effective zero-point shift of the mean flow curv
ture. The Rayleigh inflection point criterion is modified s
that a necessary condition for instability stipulates that
gradient of mean total vorticity,

SV[
dQ̂

dy
5b2d2ū/dy2, ~6!

change sign in the domain of the flow. Ifb is sufficiently
large, there is no instability. In the stratosphere, large-sc
shear flows such as the equatorial jet11 and the Antarctic and
Arctic polar vortices12,13occasionally become unstable und
episodic disturbances called wave breaking events.14 These
events redistribute the flow curvature, and stability is re
tablished.

In an ionized fluid with a magnetic field, fluid parcels a
subjected to the Lorentz force. The Lorentz force associa
with a mean magnetic field enters the momentum equatio
an ionized fluid in the same way the Coriolis force enters
momentum equation of a rotating neutral fluid. From t
respective momentum equations,r(du/dt12V3u)52¹p
and rdu/dt5erm21(u3B)2¹p, the dynamical equiva-
lence of 2V and em21B is evident. Consequently, a mag
netic field induces two-dimensional dynamics and has a
bilizing effect on shear flow, just as rotation does in a neu
fluid. The equations of reduced magnetohydrodynam
~MHD! provide a convenient and simplified representation
the essential physics,

r
d

dt
¹'

2 F

B0
5B0¹ iJi , ~7!

B0¹ i

f

B0
52hJi , ~8!

where r is the plasma mass density,¹'
2 FB0

21 is the total
vorticity, obtained as the curl of theE3B flow, Ji is the
plasma current along the equilibrium fieldB0 , andh is the
resistivity. The derivatived/dt includes advection by the
mean E3B flow ū(x)52B0

21¹F03b and fluctuatingE
3B component2B0

21¹f3b, where b is the unit vector
alongB0 . Magnetic field fluctuations have been neglected
Eqs. ~7! and ~8!. Note that the left-hand side of Eq.~7! is
identical in form to the neutral fluid case@Eq. ~1!#; the right-
hand side is the curl of the Lorentz force, and is analogou
the curl of the Coriolis force. The second equation is Ohm
law for current along the mean magnetic field. Parallel c
rent enters the dynamics provided there is a perturbation~fi-
nite wave number! along the field.

Dropping the nonlinearity, combining Eqs.~7! and ~8!
by eliminatingJi , and introducing the Fourier transform fo
y and the parallel displacement, the vorticity equation b
comes

S ]

]t
1 ikyū~x! D S ]2

]x22ky
2D fky

B0
2 iky

d2ū

dx2

fky

B0
5

B0
2

rh
ki

2 fky

B0
,

~9!
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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where a uniform magnetic field in thez direction has been
assumed. The last term of Eq.~9! represents field line-
bending energy and couples to Ohmic dissipation. Its si
larity to the b term of Eq. ~5! suggests an inflection poin
criterion based onSM5 iB0

2ki
2/rhky2d2ū/dx2 changing

sign. However, any fluctuation that is truly 2D~with ki50!
experiences no stabilizing effect from the magnetic field. R
calling thatb is the gradient of rotation, we are promoted
consider a magnetic field with shear. For a sheared slab
B05B0zz1(x/Ls)B0yy, ki→(x/Ls)ky , and any mode tha
extends fromx50 has a finite parallel wave number. Th
line-bending term now forms a quadratic eigenmode pot
tial well for the fluctuation eigenmode. When magnetic sh
is strong, the large line-bending energy associated with la
x forces the mode to localize to smallx. However, ifx50 is
the point of inflection of the mean flowū(x), magnetic shear
can force a localization that is so strong that the fluctuatio
unable to sample sufficiently large regions of opposite c
vature to access the free energy of the shear flow, thus l
ing to stability.

Numerical evaluation of Eq.~9! for a model flow profile
ū(x)5V0 tanh(x/LE) indicates that the mode is stabilized f
all wave numbers of the system if the line-bending term
larger than the curvature term atx>LE for ky evaluated at
the minimum poloidal wave number of the system.15 Omit-
ting a multiplier of order unity, stability thus requires

d2ū/dx2

u
>

1

LE
2,S B0

2kmin

rV0hLs
2D 1/2

5~Lu!1/2~Al !1/2a21Ls
21, ~10!

where Lu5m0avA /h is the Lundquist number, Al5vA /V0

is the Alfvén number, andkmin is taken to be the invers
minor radiusa21. Because the line-bending term of Eq.~9!
is quadratic inx, it dominates the driving term at largex. An
inflection point criterion can thus be formulated as a nec
sary condition for instability. It follows from insisting tha
the stabilizing term become weak at some value ofx, i.e.,
that

SM5
B0

2kyx
2

rhLs
2

2
d2ū

dx2
~11!

change sign in the domain ofx. This is equivalent to Eq.~6!,
the instability criterion for horizontal motion in a rotatin
atmosphere, i.e., thatSV5b2]2ū/]y2 change sign in the
flow domain.~Note: standard conventions are used, makinx
and y the directions of mean flow and flow shear in t
atmospheric examples, withx and y the directions of flow
shear and mean flow in the fusion example.!

Comparison of these criteria indicates that planetary
tation gradientb and magnetic shearB0

2kyx
2/rhLs

2 play
comparable roles in stabilizing shear flows. For typical to
mak parameters, Eq.~10! is readily satisfied and shear flow
stable. Consideration of rotation likely would indicate ad
tional stabilization. On the other hand,b is not overwhelm-
ingly large in the atmosphere, with wave breaking event
result. Because wave breaking events are among the la
scale dynamical events in the atmosphere, their massive
Downloaded 09 Feb 2007 to 128.104.165.60. Redistribution subject to AIP
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distribution of potential vorticity makes it difficult to detec
the role of flow shear in suppressing fluctuations and tra
port.

B. Long time dynamics

Stable flow shear suppresses turbulence4 when the rate
ts

21 at which mean shear strains eddies exceeds the e
turnover ratete

21, or a suitable surrogate such as an instab
ity growth rate. There is a second temporal condition tha
less well known but equally important: turbulence must
main in the physical region of flow shear for longer than
eddy turnover time.2 These two conditions can be express
as

ts,te,tD , ~12!

where the domain timetD is the time turbulence remains i
the region of flow shear. A large class of engineering flo
do not satisfy this criterion, but instead satisfy7

ts'tD,te . ~13!

In this regime, the nonlinearity has insufficient time
modify the flow. The flow can therefore be modeled by li
earized equations, and features of the initial state are
tained. The modeling procedure, known as rapid distort
theory~RDT!, maps fluctuation structure incident at a regi
of flow shear into an evolving pattern downstream.7,16 We
show here that BDT is the nonlinear, long time extension
RDT.

BDT and RDT regimes can be obtained as long a
short time asymptotic limits of the nonlinear advection pr
cess associated with suppression of turbulence by flow sh
Consider the advection of a scalarj by a sheared mean flow
U15ax3 , whereU1 is in thex1 direction, and advection by
2D turbulence is represented with a turbulent diffusivity. U
der a Fourier–Laplace transform involving time and thex1

direction, the evolution of the scalar is given by

~2g1 iax3k1!jk1,g2
]

]x3
S Dk1

]jk1,g

]x3
D 1k1

2Dk1
jk1,g

5sk1,g~x3!2jk1
~x3 ,t50!, ~14!

where jk1,g(x3) is the amplitude of the Fourier–Laplac
transformation ofj(x1 ,x3 ,t),

jk1,g~x3!5E
0

`

dt exp~2gt !E
2`

`

dx1 exp~ ik1x1!j~x1 ,x3 ,t !,

~15!

jk1
(x3 ,t50) is the Fourier amplitude at the initial time,u

5ax3 is the mean shear flow,sk1,g(x3) is a source for the
scalarj, andDk1

is the turbulent diffusivity. This is the type
of model solved by BDT using a two-point theory.4 The
two-point approach preserves nonlinear invariance prope
such as energy conservation. While the dissipative form
the nonlinearity in the one-point representation@Eq. ~14!#
does not preserve energy conservation, it does accura
represent the turbulent response, which governs spatial
temporal structure. In the asymptotic limit of large she
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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(a→`), this structure can be found from the unique co
binations of terms that dominate the left-hand operator of
~14!.

There are two consistent asymptotic balances in the l
of large shear. Before the lapse of the first nonlinear inter
tion time, g@Dk1

/Dx3
2,Dk1

k1
2, where Dx3 is a turbulent

eddy scale in the direction of shear. With insufficient tim
for the nonlinear interaction to modify the flow,g must bal-
anceax3k1 . This balance leads to secular evolution ofj,
with the scale in the direction of the shear shrinking contin
ously with time at a rate proportional toak1 . If the initial
state isjk1,g(x3 ,t50)5exp@21/2x3

2Dk22k1
2/2Dk2#, the so-

lution for later times is~assuming zero source!

jk1
~x3 ,t !5E

2`1 ig0

`1 ig0
dg exp~gt !

jk1,g~x3 ,t50!

~2g1 iax3k1!
, ~16!

which becomesj(x1 ,x3 ,t)5exp$21/2@x3
21(x12ax3t)2#

3Dk2%. Under a Fourier transformation of both spatial d
rections, jk1,k3

(t)}exp$2@k1
21(k31ak1t)

2#/2Dk2%. This is
equivalent to a structure that evolves from the initial Four
state exp@2(k30

2 1k10
2 )/2Dk2# under a mapping of wave num

bers,

k15k10, k35k302ak1t. ~17!

In this solution the wave number along the flow is unmo
fied, while the wave number in the shear direction increa
secularly with time. This corresponds to a continuous
crease of the turbulence scale in the shear direction.

Equation~17! is identical with the results of RDT.16 The
linearized evolution equation is solved by Fourier transf
mation in bothx1 andx3 , to yield

]

]t
jk1,k3

2ak1

]

]k3
jk1,k3

, ~18!

and the method of characteristics is introduced by writ
dj/dt[]j/]t1(]j/]kj )(dkj /dt). The wave numbers thu
evolve according to

dk1

dt
50;

dk3

dt
52akl , ~19!

with solutions given by Eq.~17!.
The secular increase ofk3 cannot continue indefinitely

because eventually the nonlinearity becomes important.
ter several nonlinear interaction timesg!Dk1

/Dx3
2. In the

asymptotic limit a→`, Eq. ~14! is singular because th
highest derivative drops out unless a singular layer deve
in which there are rapid variations ofj over x3 , allowing
iax3k1;Dk1

]2/]x3
2. In this limit, memory of the initial spa-

tial structure is lost due to nonlinear decorrelation. The str
ture is governed by the eigenmode of the homogene
equation, which describes variation in the singular lay
From Wentzel–Kramers–Brillouin~WKB! theory, the lead-
ing order asymptotic eigenmode structure in the limit«s

21

5ak1Dx3
3/Dk1

→` is
Downloaded 09 Feb 2007 to 128.104.165.60. Redistribution subject to AIP
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jk1,k3
;~x3!21/2S ak1x3

Dk1
D 21/4

expF6
2

3 S 2 iak1

Dk1
D 1/2

x3
3/2G

(«s
21→`). ~20!

From WKB ordering, the rapid variation inx3 that allows
Dk1

]2/]x3
2 to balanceiax3k1 in the singular limita→` is

dominated by the exponential function. Note that this lim
corresponds to«s,1, i.e., the strong shear limit of BDT, an
the spatial scale of the rapid variation in the shear directio
Dx3us5(Dk1

/ak1)1/3, precisely the reduced correlatio
length derived by BDT. This value ofDx3 , or equivalently
k3us5(Dk1

/ak1)21/3, represents the nonlinear saturation
the secular growth of Eq.~17!. BDT is thus an extension o
RDT to the nonlinear, long time regime. Note that RD
while incapable of giving the saturated value of the scale
the direction of shear, does show that this scale diminis
from nominal values in turbulence with no mean flow she
It also shows that the scale along the flow is unchanged
the linear regime. In nonlinear treatments it has gener
been assumed that this scale remains unchanged.

C. 2D turbulence

Two-dimensional dynamics provides an ideal circu
stance for detecting suppression of turbulence by flow sh
To understand why, consider a three-dimensional mean fl
with shear given byU15a1x1 ,U25a2x2 ,U35a3x3 , where
a1 can vary in time but not in space. Incompressibility co
strainsa1 so thata11a21a350. This type of flow occurs
in ducts with changing cross section. As in the example
the prior section, the tendency of flow shear to enlarge
diminish scales nonlinearly is already apparent in the lin
evolution of RDT. We therefore employ RDT to examine t
evolution of vorticity,

]v i

]t
1Ul

]v i

]xl
5v l

]Ui

]xl
, ~21!

wherev5¹3U is the vorticity, viscosity has been assum
to be negligible, and only linear evolution is retained, co
sistent with RDT. Under the Fourier expansionv i

5SkV i(k,t)exp(ik•x), the characteristic procedure yields

dV1

dt
5a1V1 ,

dk1

dt
52a1k1 , ~22!

where the other two components are governed by ident
equations with the appropriate change of subscripts. It is
dent that along directions in which the flow moves outwa
from the origin (a j.0), the vorticity intensifies and the
wave number decreases. The opposite is true along direc
in which the flow moves inward. This is a simple manife
tation of a basic process known as vortex tube stretchin17

The outward directed flow velocity increases with distan
from the origin and thereby stretches vortex tubes wh
axes align with the flow velocity. The increase of vortex tu
length requires a decrease of cross-sectional area becaus
vortex volume must remain invariant. The smaller cro
sectional area requires an increase in vorticity to maintain
invariance of circulation~-u•dl5constant, for inviscid
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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flow!. In a flow with a152a35constant,a250, vorticity
in the x1 direction increases while its cross-sectional ar
parameterized byk3 , decreases. This means that the wa
numberk3 increases. Similarly,V3 and k1 decrease. This
intensification process is a 3D phenomenon. If the turbule
is 2D, the vorticity is solely in thex2 direction. With a2

50, the vorticity is unchanged. In this case only the sca
are modified. In 3D flows, the intensification of vorticit
aligned with the mean flow is a competing effect to the
duction of vorticity perpendicular to the flow. While there
suppression in one direction, the signals are dominated
the amplified components in the other directions, mak
suppression of vortical turbulence, even in the long time
main, difficult to detect.

There is, however, a function of the vorticity, known
potential vorticity, that responds to flow shear in compre
ible, rotating, 3D turbulence the way advected scalars
spond in 2D turbulence. The latter is described in BD
which treats a scalar quantity whose total concentration
invariant, i.e., is governed solely by advection. In the inva
ant situation, advection incorporates just two processes,
straining by mean flow shear and straining by the turbulen
These lead to suppression when the rate of mean strai
exceeds the turbulent straining rate. Vorticity, in contrast
not invariant, but has sources associated with compress
ity, rotation, and stretching. These effects can be trea
along with the straining of the turbulence and mean fl
shear, by considering the potential vorticity, which rema
invariant in the presence of these effects. The potential v
ticity is Q5r21v•¹q, where r is the density,v is the
vorticity, andq is the potential temperature, defined as t
temperature acquired by a fluid parcel under an adiab
change from a given temperature and pressure to a refer
pressure. The potential vorticity is an invariant of the moti
because its definition~through the factorvr21! offsets the
increase of vorticityv when fluid within a filament is com-
pressed. The increases of vorticity as a filament is stretc
by lofting in a stable stratified medium is offset by¹q,
which acts as a Lagrangian marker, adjusting the metric
the stretching of material lines in the flow.8 The invariance of
potential vorticity,

S ]

]t
1u•¹ DQ50, ~23!

holds for a system governed by]u/]t1(u•¹)u12V3u
52r21¹p2¹F, p5p(r,h), ]r/]t1¹•(ru)50, and
]h/]t1(u•¹)h50, where u is a 3D flow comprised of
mean and turbulent components,F is the potential for exter-
nal forces,V is the rotation rate,h is the specific entropy
andp is the pressure.8 The potential temperature can be r
placed with any function ofh and Eq.~23! still holds. Equa-
tion ~23! is like the scalar evolution equation of BDT in th
limit of weak dissipation, i.e., there are only two time scal
the shear and turbulent straining rates. Hence, we imm
ately conclude that the fluctuation scale of potential vortic
in the direction of shear and the correlation time are redu
when the shear straining rate exceeds the turbulent dec
Downloaded 09 Feb 2007 to 128.104.165.60. Redistribution subject to AIP
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lation rate. Moreover, in the presence of a source associ
with advection of mean potential vorticity, fluctuations in th
potential vorticity will be suppressed.

III. SUPPRESSION IN NONIONIZED FLOWS

A. Coherent vortices in Navier–Stokes turbulence

Suppression of turbulent vorticity transport by flo
shear leads to spatial intermittency in decaying 2D Navie
Stokes turbulence.18,19 Intermittency is manifested in the
emergence of coherent vortices in simulations that initial
homogeneous turbulence from a Gaussian random distr
tion of vorticity with no mean flow.20 As the turbulence de-
cays, certain eddies emerge as coherent vortices, avoi
mixing by ambient fluctuations and thus persisting for a la
number of eddy turnover times. The vortices are patche
intense localized vorticity characterized by a particular s
tial profile of a quantity called the Gaussian curvature~GC!.
The GC is the difference of the mean squared shear str
(]V/]x2]U/]y)21(]U/]x1]V/]y)2, and the mean
squared vorticity.~U andV are the total flow velocities in the
x andy directions.! The GC is strongly positive in the vorte
core, and strongly negative in the edge. Coherent vort
avoid turbulent mixing by suppressing turbulence in th
periphery. Localized vorticity fluctuations have a flow profi
in which flow shear is largest at their edges. Those wh
initial vorticity is stronger than that of ambient fluctuation
possess an edge flow shear whose shear straining rate
ceeds the ambient turbulent decorrelation rate. This sh
flow suppresses the ambient turbulence and its transpo
vorticity, and yields the observed profile of GC. Vortice
whose initial vorticity is comparable to that of ambient tu
bulence cannot suppress ambient turbulence. They par
pate in the cascade of energy to the dissipation scale
decay in an eddy turnover time.

The interaction of an intense symmetric vortex with t
ambient turbulence can be described with a two-time sc
analysis of the Navier–Stokes equation.18,19 The origin of a
polar coordinate system is placed at the center of a vor
With a Fourier–Laplace transform of the turbulent vortici
j(r ,u,t),jn,g5*dt exp(2gt)*dq exp(inq)j(r,q,t), the n50
component is the symmetric vortex andn>1 is the turbu-
lence. Then50 component evolves on a slow time sca
under the action of turbulent mixing. On the rapid time sc
the vortex can be treated as stationary. The turbulence s
ture at the edge of the vortex is subjected to the strong s
of the vortex, and has an exponentially decaying envel
moving inward from the vortex edge. The envelope functi
has the same form as that of Eq.~20!, i.e., jn,g

;exp@6(2/3)(2 iVn8/Dn)1/2(r 2r 0)3/2#, where Vn8
5n](ū/r )/]r ur 0

is the differential rotation ofū(r ), the vor-

tex flow, r 0 is a radial position in the vortex edge, andDn is
the turbulent diffusivity. On the long time scale, the vortex
subject to mixing by turbulence, with an eddy viscos
given by
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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Dv;E dg(
n

S 2 in2ufn,gu2

r 2 D SVn8
21

~r 2r 0!1/4~a2r 0!3/4

3expF2

3
S 2 iQn

Dn
D 1/2

~r 2r 0!3/2G , ~«s
21@1!, ~24!

whereS is a weakly varying structure function of order unit
a is the vortex radius, and for the present parameters«s

5Dn /a3Vn8 . Due to phase mixing in summing the expone
tial of a complex argument, the effective eddy viscosity
dominated byn51. Moreover, the real part of the argume
of the exponential makesDv different from zero only within
a narrow exponential layer of thickness (Dn /Vn8)

1/3 at the
vortex edge. Stronger vortices~relative to ambient fluctua
tions! have a larger value of«s

21, and therefore a smalle
effective viscosity. For turbulence to mix the vortex, it mu
diffuse into the vortex, extending the edge layer inward. T
process is greatly slowed by the weakness of the eddy
cosity, and its localization within the narrow layer at th
vortex edge.

The condition «s5Dn /a3Vn8,1 is dimensionally
equivalent to the condition that the vortex vorticity exce
the rms turbulent vorticity, (J0 /^j2&1/2.1), where the rms
average is computed for an ensemble of fluctuations in
vicinity of the vortex andJ0 is the vortex vorticity atr
50. This inequality indicates that an initial vorticity fluctua
tion becomes coherent if it lies in the tail of the initial vo
ticity probability distribution function~pdf!. For decaying
turbulence, fluctuations initially in the core of the pdf, di
tinguished byJ0 /^j2&1/2,1, decay as part of the Kolmog
orov cascade. Fluctuations in the tail of the pdf (J0 /^j2&1/2

.1) decay at a far slower rate, causing the tail probability
become enhanced with time. A Kolmogorov cascade with
coherent vortices implies a Gaussian pdf. Thus, an in
Gaussian pdf will evolve so that its core remains Gauss
while its tail develops an enhanced non-Gaussian feat
This type of evolution is observed in intermittent turbulenc

The observed GC profile in the region of a cohere
vortex directly indicates that the shear suppression crite
«s,1 is satisfied. The GC of the vortex flow isCv
5r 2n22Vn8

22J2, where J is the vorticity of the vortex,
while the total GC is

CT5
r 2Qn8

2

n2
2~J21^j2&!. ~25!

The turbulent vorticity is included in Eq.~25! to account for
the total squared vorticity. It is of importance nearr 5a,
where the vortex vorticity is zero.~The vanishing of the vor-
tex vorticity at the vortex radius is implicit in the stipulatio
that the vortex is localized.! The turbulent shear stress is n
included in Eq.~25! because it is dominated by the vorte
shear stress in the edge, and fluctuations are small nea
center. The observed negative GC near the centers of
coherent vortices19 reflects the fact thatr 2Vn8

2n22 vanishes
there. At the edge,J2 vanishes and positive GC implies th
a2Vn8

2n2.^j2&'Dn
2a24, reproducing«s,1.
Downloaded 09 Feb 2007 to 128.104.165.60. Redistribution subject to AIP
-

t
s
s-

e

o
o
l
n
e.
.
t
n

the
he

As apparent from the similarity of the 2D Navier–Stok
equation and the Hasegawa–Mima equation, flow shear
vehicle for intermittency and coherent structure formation
drift wave turbulence.21,22

B. Quasigeostrophic turbulence

A number of observations of constituent concentratio
~aerosols, chloroflourocarbons, ozone, etc.! in the strato-
sphere show steep gradients coincident with regions
strong horizontal shear.6 It is possible that these represent
suppression of turbulent transport due to flow shear. T
statement is speculative at present because other comp
processes, such as large-scale wave breaking events,
also be assessed, and source and sink configurations o
constituents and the turbulence itself must be determin
One of the most striking examples is that of aerosol injec
into the tropical stratosphere by volcanic eruptions.23 The
aerosols are quickly spread along the equator by the equ
rial jet, a zonal flow in the lower part of the stratosphe
North-south spreading extends to about620° latitude where
a sharp poleward gradient of aerosol concentration for
This gradient is closely aligned with the flanks of the jet
region of strong flow shear. The gradients at620° persist for
years after a major volcanic eruption. Strong constituent g
dients also appear at the edge of the polar vortices, aga
region of strong flow shear.11 Moreover, fluctuations in the
wind velocity itself appear to be smaller in the region
shear than on either side, where the mean wind speed pr
is flatter.12

In simple models of geostrophic turbulence it is possi
to specify what conditions are present and thus unequ
cally determine the role of flow shear. Theb-plane model,
Eq. ~5!, is ideal because the physics it contains is analog
to that of plasma models while it applies to large-scale m
tions in the stratosphere. Two studies have documented
pression of turbulence5,6 and transport6 in regions of strong
mean flow shear. In these studies a mean zonal flow w
meridional shear was specified as a model for flows such
the equatorial jet and polar winter vortices. For compu
tional simplicity, the mean flow profile was a one-perio
sinusoid, allowing periodic boundary conditions in bo

FIG. 1. Contours of constant vorticity forb-plane turbulence with~a! no
mean flow, and~b! a cosine jet in thex direction with minima at the top and
bottom and a maximum in the center.
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zonal and meridional directions. The turbulence was init
ized and allowed to decay, or driven by an external force
the simulations, turbulence is not driven by the mean fl
becauseb is chosen sufficiently large relative to the seco
derivative of the mean flow to make the flow stable. T
largest scales of the turbulence were smaller than the me
onal scale of the mean flow by a factor of;5. This turbu-
lence is representative of fluctuations created by wave br
ing, or driven by other processes, such as waves propag
upward from the troposphere.

A reduction of turbulent vorticity where the zonal mea
flow has maximum shear was observed in Ref. 5, but
explanation was offered. The shear suppression criterion,
~12!, was not a part of the analysis or interpretation, and i
difficult to determine how strongly it was satisfied. In Ref.
parameters were chosen to makets /te as small as 0.1 in the
region of maximum shear. Figure 1 shows contours on c
stant vorticity for two cases, one with no mean flow initia
ized in the simulation, and one with a cosine jet yieldi
ts /te>0.1 in the region of strongest flow shear. There is
near absence of turbulence wherets /te,1 and strong tur-
bulence elsewhere. For the case with no jet the turbulenc
homogeneous and isotropic. Transport can be examined
theb-model of Eq.~5! by using tracer particles and calcula
ing an effective spatial diffusivity from the separation
pairs of tracer particles as a function of time. The diffusiv
is found to be minimum wherets /te is minimum. The dif-
fusivity decreases as the jet amplitude is raised for fix
mean flow scale length. Above a critical amplitude, howev
the jet becomes unstable (]2ū/]y2.b), and the diffusivity
rises abruptly. Above the instability threshold diffusivities
the x and y directions are comparable, while below th
threshold, the diffusivity in the direction of shear is mu
smaller than the diffusivity along the flow.

IV. CONCLUSIONS

Flow shear is able to suppress turbulence and trans
in nonionized flows, just as it does in plasmas. However,
process is unfamiliar in nonionized flows because three c
ditions required for suppression, beyond the standard str
shear condition,4 are rarely satisfied. These conditions a
summarized in Table I. They stipulate that shear flow m
be stable, that turbulence must remain in the domain of fl
shear for longer than an eddy turnover time, and that
dynamics should be 2D.

Consideration of these conditions indicates that rotat
and the magnetic field play analogous roles in stabiliz
shear flow. In fusion plasmas, magnetic shear has typic
been credited for stabilizing shear flows; however, rotat
may also contribute to the stability of the shear flows as
ciated with experiment. The suppression of turbulence
flow shear is a nonlinear effect that operates when turbule
is subjected to shear for longer than a nonlinear correla
time. The short time regime, of interest when turbulen
passes transiently through strong flow shear in less tha
nonlinear interaction time, is a complementary limit f
which the linearized rapid distortion theory~RDT! was de-
veloped. For unidirectional plane shearing, RDT predict
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secular growth of wave number in the direction of the she
This wave number growth saturates nonlinearly after a n
linear interaction time at the value predicted by BDT.5 For
the wave number along the flow there is no change in m
nitude in the short time regime, indicating that there is
evolution to saturate. This provides the rationale for an
sumption implicitly made in BDT that the scale along th
flow is not modified by the flow shear. The restriction to 2
dynamics eliminates vortex tube stretching, whose amp
cation of vorticity in directions along the flow and along th
shear competes with suppression in the other direction. H
ever, an invariant function of vorticity, the potential vortic
ity, responds to shear in 3D compressible flows the way
variant scalars do in 2D flows.

Two nonionized flows that exhibit suppression of turb
lence by flow shear were considered. In 2D decay
Navier–Stokes turbulence, the suppression of ambient tu
lence by the shear flow at the edge of large amplitude v
ticity fluctuations allows them to escape mixing.18,19 They
emerge as the coherent structures that account for the sp
intermittency and non-Gaussian nature of the flow. Qua
geostrophic turbulence in ab-plane satisfies the three cond
tions for suppression of turbulence by flow shear, with ro
tion providing stability and two dimensionality. Simulation
of externally driven turbulence in a cosine jet show suppr
sion of both turbulence and transport.5,6 This behavior is
speculated to play a role in transport barriers in t
stratosphere.6
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