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P. W. Terry'
University of WisconsiaMadison, Madison, Wisconsin 53706

(Received 10 November 1999; accepted 7 January)2000

The suppression of turbulence by mean flow shear is shown to apply to nonionized flows as well as
plasmas. However, besides the criterion that the shearing rate exceed the turbulent decorrelation
rate, there are three additional conditions. These stipulate that the shear flow must be stable, that
turbulence must remain in the domain of flow shear for longer than an eddy turnover time, and that
the dynamics should be two dimension@D). In nonionized flows, these conditions are not
typically satisfied, explaining why shear suppression is not a familiar phenomenon in
hydrodynamics. The three conditions are discussed in the context of nonionized and plasma flows.
Two examples of suppression in nonionized flows are presented. One involves the formation of
coherent structures in 2D Navier—Stokes turbulence and the other involves large-scale turbulence in
the stratosphere. @000 American Institute of Physid$$1070-664X00)91805-§

I. INTRODUCTION of interest for plasma physics. It would help validate the
basic mechanism of shear suppression in plasnemianc-

The suppression of turbulence and turbulent transport b}/ . U
. . ) . ng confidence that plasma transport barriers indeed operate
EXB flow shear in magnetically confined plasmas is so

widespread that it has been called univefarhis phenom- :Eroughﬂthe suppfrestﬁlon of tu;'bulte%cef?y Iloyvtghegrtand not
enon is regarded as the central engine of the H-mbdgh € contluence ot other complicaled elects Intrinsic fo con-

confinement mode an edge transport barrier observed in a”fined plgsma$e.g.., confi.n.ipg fields and.geometrie.s, multiple
auxiliary heated tokamaks, in stellarators, and in mirrors.ﬂucu,Jatlons and -|nstab.|l|t|es, nonamblpolar particle losses,
Transport barriers associated witx B flow shear have also muluple stat<_as_, b|furcat!ons, echackmg.gt present such an
been detected in the reversed field pinch, and are believed fPeriment, itis essential for the credibility of the shear sup-
apply to theZ pinch. The phenomenon is invariant with re- pres_glon_mechamsm to (_jetermme why this mechamgm is not
spect to plasma location, operating in internal and edgé@miliar in hydrodynamics, what features of nonionized
transport barriers alike. Implicit in these observations, andlows are responsible, and the implications for fusion plas-
explicitly demonstrated in numerous model calculations andnas-
simulations, suppression of turbulence By B flow shear We show that suppression of turbulence by flow shear is
occurs for many different types Of turbu|ence and instabi”-not a universal feature of all turbulent ﬂOWS, but SubjeCt to
ties. Given this quasiuniversal character, it is striking thatseveral conditions(besides the condition that the shear
this phenomenon is not a familiar feature of nonionizedstraining rate exceed the turbulent decorrelatiorfyalthese
flows. Scouring the literature of nonionized flows, it is pos-conditions are often satisfied in fusion plasmas, but not in
sible to identify isolated instances where suppression of turaonionized flows. The conditions arét) the sheared flow
bulence or fluctuations by flow shear appears to benust be stable(2) turbulence must remain in the region of
operating? however, the physical mechanism has not beerstrong flow shear for longer than a turbulent correlation time,
identified in any case we have encountered. and (3) two-dimensional(2D) flow is desirable for making
Although the suppression of turbulence by flow shear inthe phenomenon identifiable. When these conditions are vio-
plasmas is a feature of tHex B velocity, a flow of charged lated, turbulence is driven by shear instead of suppressed, it
particles in an ionized plasma, there is ample reason to exs advected through the region of shear before the nonlinear-
pect that suppression of turbulence by flow shear ought tity can decorrelate fluctuations, and suppression of vorticity
occur in nonionized fluids. The charge-independEmnt B in certain directions is intermingled with amplification in
velocity is identical for ions and electrons. As the universalothers.
advector of fluctuations, it plays the same role in plasma Table | compares plasma flows with nonionized flows in
continuum equations as the mean and turbulent flows of northe context of the conditions listed above. While there are
ionized continuum descriptiorisA demonstration of sup- nonionized flows that satisfy all three conditions, they are
pression of turbulence by flow shear in a nonionized flow isexceptional. One case is large-scale flow in the atmosphere
and oceans, known as quasigeostrophic flow. Suppression of

*Paper KT 1 2 Bull. Am. Phys. Soc4, 190 (1999. quasigeostrophic turbulence by flow shear has been observed
HTutorial speaker. in simulations® and is postulated to occur in the
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TABLE I. Situation in plasma and nonionized flows with regard to conditions for suppression.

Stability Long time 2D
(Shear flow must (Turbulence must remain (To avoid 3D
be stablg in shear region longer amplification of
than nonlinear time vorticity)
Magnetic Usually stable: Yes: Yes:
fusion Magnetic shear Flow shear is present Strong ambient
plasmas and rotation over entire path magnetic field=
stabilize flow shear of circulating flow ki<k,
Non Often unstable: Frequently no: Almost never:
ionized Wall flows, jets, wakes, In strongly sheared Exception: large-scale
flows boundary layer flows, engineering flows, flows in atmosphere,
flow past objects turbulence is often in ocean(flow time scale
are unstable shear region transiently > Earth’s rotational
(e.g., wind tunnel with period

local constriction

stratospher@. The situation where turbulence is advectedsome shear flows are stable and thus capable of suppressing
through a region of strong flow shear in a time shorter tharturbulence. Stability can be achieved under a variety of
the eddy turnover time is quite common in nonionized flows,mechanisms, but general stability criteria are difficult to for-
particularly engineering flows.A widely used technique mulate. Necessary and sufficient conditions depend on the
known as rapid distortion theoi®RDT) can be employed to precise details of spatial variations of flow, density, rotation,
trace out the fluid motions. We show that RDT is the shortetc., and are rarely availableCertain principles, however,
time, linear counterpart of the long time, turbulent decorrecan be enumerated. To this end, consider the Kelvin—
lation theory of Biglari, Diamond, and Terr{8DT).* In Helmholtz(KH) instability in a fluid of uniform density for a
three-dimensional3D) flows, the suppression mechanism continuous mean flow with a region of linear shear con-
applies only to vorticity perpendicular to both the directionsnected at opposite ends to regions of oppositely directed uni-
of the flow and the shear. Vorticity in either the direction of form flow. Specifyingx andy as the directions of the mean
the flow or the shear is amplified through the process oflow and shear,u(y)=U, for y>L; u(y)=-U, for
vortex tube tilting and stretching. Since the fluctuation specy<—L; andu(y)=Ugy/L for —L<y<L. The instability is

trum is dominated by the most intense fluctuations, measuregoverned by the Navier—Stokes equation. Taking the curl
signals and transport are generally dominated by the ampland assuming inviscid 2D perturbatigmo variation in thez

fied components of the turbulence and not the suppressatirection,
components. We show, however, that there is a 3D generali-

zation of BDT that applies to all components of the vorticity —[v x (u+V$xz)]
under a Lagrangian construct known as the potentiaf't

vorticity.® Since the potential vorticity also incorporates the P 42T 5%
effects of compressibility, suppression is found to apply ina = —+Uly) —+Vdxz-V|VZh— ——=
general way to compressible fluctuations in 3D. at X dy” ox

This paper is organized as follows. In Sec. Il we discus%here the fluctuating flomi=V$x z is expressed in terms

each of the three conditions for suppression in the context of

both fusion plasmas and nonionized fluids. This section in-Of the stream functio), andzV=¢=V>xu is the vorticity.

cludes analyses of shear flow stability, an examination of th(-arhe last term on the left-hand side is required for instability,

relationship of RDT to BDT, a description of vortex tube I.e., the flow must have a second derivative. For the present

stretching, and an analysis of potential vorticity suppression?xampIe this is pro_wded by the dlscontmumgs_ n slop_ex at
==*L. For fluctuations centered at the vorticity maximum

Section Il presents two cases in nonionized fluids where .
turbulence and transport are suppressed. One deals with e 0, the growth rate is
formation of coherent structures in decaying 2D Navier— 1 1 sinh2kL)| ™
Stokes turbulence, and the other with quasigeostrophic tur-  y=Ugky| ——1— — > , 2
bulence. The conclusions are presented in Sec. IV. kil 2K, L” exp(2kL)
wherek, is the Fourier wave number in thedirection. The

Il. REQUIREMENTS FOR SHEAR SUPPRESSION OF growth rate is positive providekl,L <0.64, with the growth
TURBULENCE rate maximum neak,L =0.4. Very long wavelengthsk(L
<0) are unstable, but the growth rate goes to zerg ampes
to zero. The instability conditiork,L<0.64 can be inter-

Unstable shear flow routinely arises in nonionized fluids,preted as allowing a perturbation with<U, to sample
leading to the common association of shear flow with theboth signs of the curvaturd?u/dy? occurring aty=*L.
driving of turbulence and not its suppression. NonethelessThis permits the interchange of vortex filaments to relax the

0 @

A. Stable shear flow
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unstable shear profile. The requirement that flow curvatur&his is the equation for quasigeostrophic turbulence in a
change sign in the domain of instability, known as the Ray-g-plane. Comparing with Eq(l), the stabilizing effect of
leigh inflection point instability criterion, applies to arbitrary planetary rotation through thg term is evident in its cre-
profiles as anecessarycondition for instability!® The flow  ation of an effective zero-point shift of the mean flow curva-
curvature is the gradient of vorticity for the above case, andure. The Rayleigh inflection point criterion is modified so
the inflection point criterion reflects a constraint imposed bythat a necessary condition for instability stipulates that the

invariance of vorticity. gradient of mean total vorticity,
Shear flow can be stabilized by rotation and buoyancy, .
and can be incorporated into a generalized inflection point ~dQ q2UTdv2
criterion'® based on the gradient of a generalized vorticity de_y_,g_ urays, ©)

known as the potential vorticit@ln ionized fluids, the mag- o ) . o

netic field also stabilizes shear flow. Because the magnetigh@nge sign in the domain of the flow. £ is sufficiently
(Lorentz and rotation(Coriolis) forces enter the momentum large, there is no instability. In t_he stratosphere, Ia_rge-scale
equation isomorphically, the modification of the inflection Shear flows such agztlge equa_ltona’rjjand the Antarctic and
point criterion by magnetic field is analogous to that of rota-Arctic polar vortices™occasionally become unstable under
tion. To consider rotation, we examine the flow of a plan-€Pisodic disturbances called wave breaking evb_‘hfsh_ese
etary atmosphere. For fluid motions whose typical time Sca|@vepts redistribute the flow curvature, and stability is rees-
is longer than the planetary rotation period, motion is 2Dt@bPlished. o o ,

with negligible variation in the vertical direction. The invari- N @n ionized fluid with a magnetic field, fluid parcels are
ant generalized vorticity is the total vortici, which in- subjected to the Lorentz force. The Lorentz force associated
cludes the vertical component of the planetar;/ vorticityr- with a mean magnetic field enters the momentum equation of

ticity of flow component corotating with the planeind the an ionized fluid in the same way the Coriolis force enters the

relative vorticity (vorticity of motion in the rotating frame momentum equation of a rotating neutral fluid. From the
y y 9 respective momentum equationgdu/dt+2QXu)=—-Vp

Thus, and pdu/dt=epm 1(uxB)—Vp, the dynamical equiva-
dQ d lence of A2 andem !B is evident. Consequently, a mag-
i &[29 sing—V2d]=0, (3  netic field induces two-dimensional dynamics and has a sta-

bilizing effect on shear flow, just as rotation does in a neutral
where ) is the planetary rotation rat@,is the latitude, and 1Uid- The equations of reduced magnetohydrodynamics
V2® is the relative vorticity, expressed in terms of a stream(MHD) proylde a cpnvenlent and simplified representation of
function® and the Laplacian of displacements perpendiculat® €ssential physics,

to the vertical. The advective derivatigédt is with respect d ®

to relative motion. We introduce a tangency plane in which PanB—ZBoVuJu: (7)
to describe the 2D motion. The latitude of the tangency point 0

is 0y, y=a(6— 6y) is the northward displacement about the

tangency pointx is the eastward displacement, aadhe BOV”B—= -ndy, (8)
radius of the planet. The vertical component of the planetary 0

vorticity is wherep is the plasma mass density?®B, "’ is the total

vorticity, obtained as the curl of thEXB flow, J, is the

20 sin 6= 2Q sin 6o+ y pla_sma_ current alor)g t_he equil_ibrium fieBy)), anq n is the
a resistivity. The derivatived/dt includes advection by the
y meanEXB flow U(x)=—B,V®,xb and fluctuatingE
=20 sinfy+ =20 cosby+ O(y?/a?) X B component—B, 'V ¢xb, whereb is the unit vector
a alongB,. Magnetic field fluctuations have been neglected in
=fo+yB+0(y?a?), (4) Egs. (7) and (8). Note that the left-hand side of E?) is

identical in form to the neutral fluid ca$&q. (1)]; the right-
valid for small displacementsya). Here 8 is the lowest  hand side is the curl of the Lorentz force, and is analogous to
order gradient in the tangency plane of planetary vorticitythe curl of the Coriolis force. The second equation is Ohm’s
2() sin 6. The tangency plane is referred to ag-alane. The law for current along the mean magnetic field. Parallel cur-
relative vorticity is the curl of the relative flow=V® Xz, rent enters the dynamics provided there is a perturbation
wherez is normal to theg-plane. If the stream function has nite wave numberalong the field.
mean and turbulent componends=®,(y)+ ¢(x,y), the Dropping the nonlinearity, combining Eqé/) and (8)
flow u=u(y)x+V¢Xxz has a mean zongeast-westcom- by eliminatingJ,, and introducing the Fourier transform for
ponent with north-south sheai(y)=d®,/dy and a turbu- y and the parallel displacement, the vorticity equation be-
lent componenV ¢ X z. Specifying these flows in the advec- comes
tive derivative, Eq(3) becomes

9 vivavo [ k2] 2o AUy By o Suy
ot ox* Y | By Ydx* By pm ' B’
9

d’udp ¢

J J
4OV — . 24— "
&t+u(y) &X+V¢><z V|Vp a0y ax+ r 0. (5
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where a uniform magnetic field in thedirection has been distribution of potential vorticity makes it difficult to detect
assumed. The last term of E@9) represents field line- the role of flow shear in suppressing fluctuations and trans-
bending energy and couples to Ohmic dissipation. Its simiport.

larity to the B term of Eq.(5) suggests an inflection point

criterion based onSy=iBjk?/pnk,—d?uldx® changing

sign. However, any fluctuation that is truly 2with k,=0)  B. Long time dynamics

experiences no stabilizing effect from the magnetic field. Re-
calling thatg is the gradient of rotation, we are promoted to _-1

Stable flow shear suppresses turbulénghen the rate
. S i ~ 75~ at which mean shear strains eddies exceeds the eddy
consider a magnetic field with shear. For a sheared slab wi
Bo=Bo,Z+ (X/Lg)Boyy, kj—(x/Lg)ky, and any mode that

Rirmover rater, *, or a suitable surrogate such as an instabil-

N ity growth rate. There is a second temporal condition that is
extends fromx=0 has a finite parallel wave number. The
line-bending term now forms a quadratic eigenmode poten

less well known but equally important: turbulence must re-
. . . ; main in the physical region of flow shear for longer than an
.t'al well for the quctu_atlon elg.enmode. When n_wagneup Shea@ddy turnover timé.These two conditions can be expressed
is strong, the large line-bending energy associated with Iarggs
x forces the mode to localize to smallHowever, ifx=0 is

the point of inflection of the mean flow(x), magnetic shear Ts<Te<Tp, (12)

can force a localization that is so strong that the fluctuation i$ynere the domain timep, is the time turbulence remains in

unable to sample sufficiently large regions of opposite Curyhe region of flow shear. A large class of engineering flows
vature to access the free energy of the shear flow, thus leagy, ot satisfy this criterion, but instead satisfy

ing to stability.

Numerical evaluation of Eq9) for a model flow profile TS~ Tp<Te. (13
u(x)=Votanh/Lg) indicates that the mode is stabilized for | this regime, the nonlinearity has insufficient time to
all wave numbers of the system if the line-bending term isyogify the flow. The flow can therefore be modeled by lin-
larger than the curvature term =& L for ky evaluated at  earized equations, and features of the initial state are re-
the minimum poloidal wave number of the syst&hOmit-  tained. The modeling procedure, known as rapid distortion
ting a multiplier of order unity, stability thus requires theory (RDT), maps fluctuation structure incident at a region

of flow shear into an evolving pattern downstreatfi.We
d’uldx’ 1 BEKmin 1/2_ LY ANY2a 1L -1 (10 show here that BDT is the nonlinear, long time extension of
pVo77|-52 _( U) ( ) a s ( ) RDT.

BDT and RDT regimes can be obtained as long and
where Lu= uoav/ 7 is the Lundquist number, Alv,/V, short time asymptotic limits of the nonlinear advection pro-
is the Alfven number, andk,,, is taken to be the inverse cess associated with suppression of turbulence by flow shear.
minor radiusa”!. Because the line-bending term of E§) Consider the advection of a scalaby a sheared mean flow
is quadratic irx, it dominates the driving term at largeAn U= axs, whereU, is in thex, direction, and advection by
inflection point criterion can thus be formulated as a neces2D turbulence is represented with a turbulent diffusivity. Un-
sary condition for instability. It follows from insisting that der a Fourier—Laplace transform involving time and ihe

the stabilizing term become weak at some valuexofe.,  direction, the evolution of the scalar is given by
that
i axak (D ) | ep
—y+ -— +
B2 oAT (—y+iaxgky)éy, , axs |~ oxg 1Dk, &k,
y
Sy = -— 11
RN 19 = 1y y(Xa)— €, (X3,1=0), (14

where gkw(x3) is the amplitude of the Fourier—Laplace

change sign in the domain &f This is equivalent to Eq6), transformation Of(xy,Xs.t)
173 3

the instability criterion for horizontal motion in a rotating

atmosphere, i.e., thaB,=B— d?uldy? change sign in the (" * .
flow domain.(Note: standard conventions are used, making gkl”’(x:g)_ 0 dtexp(— 1) _wdxl eXp(iK1X1) §(X1, %3, 1),
and y the directions of mean flow and flow shear in the (15)

atmospheric examples, with andy the directions of flow
shear and mean flow in the fusion example. } .
Comparison of these criteria indicates that planetary ro= @Xs iS the mean shear flows, ,(x3) is a source for the
tation gradientg and magnetic sheaBSkyxz/p 7]|_§ play scalaré, andel is the turbulent diffusivity. This is the type
comparable roles in stabilizing shear flows. For typical toka-of model solved by BDT using a two-point thedtyThe
mak parameters, E¢L0) is readily satisfied and shear flow is two-point approach preserves nonlinear invariance properties
stable. Consideration of rotation likely would indicate addi-such as energy conservation. While the dissipative form of
tional stabilization. On the other hang,is not overwhelm- the nonlinearity in the one-point representatidfq. (14)]
ingly large in the atmosphere, with wave breaking events aloes not preserve energy conservation, it does accurately
result. Because wave breaking events are among the largasipresent the turbulent response, which governs spatial and
scale dynamical events in the atmosphere, their massive réemporal structure. In the asymptotic limit of large shear

§k1(x3,t=0) is the Fourier amplitude at the initial tima,
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(a—), this structure can be found from the unique com- akq x| 14 2 [ —iaky\Y?

o . —12| £7173 1 312
binations of terms that dominate the left-hand operator of Eq. €,k ™ (X3) D, exg *3 D, X3
(14). ! !

There are two consistent asymptotic balances in the limit (g5 t>). (20
of large shear. Before the lapse of the first nonlinear interac- ) , L
tion time, y> Dklleg,Dklki, where Ax; is a turbulent From WKB ordering, the rapid variation ir; that allows

27 93,2 ; : i imi i
eddy scale in the direction of shear. With insufficient timeDkla_ /9x to balance axsky _|n the S|_ngular I|m|taﬂoo. IS_ .
for the nonlinear interaction to modify the flovy,must bal- dominated by the exponential function. Note that this limit

ance axsk,. This balance leads to secular evolutionégf —COMesponds tes<1, i.e., the strong shear limit of BDT, and
with the scale in the direction of the shear shrinking continuhe spatial scale 011‘/3the rapid variation in the shear direction is
ously with time at a rate proportional tek, . If the initial ~ 2Xals= (D, /aki)™, precisely the reduced correlation
state isgkl,y(x3,t=0)=exp[—1/2x§Ak2—kf/ZAkz], the so- length derived b_yllsBDT. This value afx; , Or equivaler_1t|y
lution for later times iassuming zero sourge k3|s=(Dkl/ak1) , represents the nonlinear saturation of
the secular growth of Eq17). BDT is thus an extension of

o +iyg €k, y(X3,1=0) RDT to the nonlinear, long time regime. Note that RDT,
§kl(x3,t)= ~ dyexp(yt) (—+I—Xk) (16)  while incapable of giving the saturated value of the scale in
R yriatsta the direction of shear, does show that this scale diminishes

from nominal values in turbulence with no mean flow shear.
It also shows that the scale along the flow is unchanged in
the linear regime. In nonlinear treatments it has generally
been assumed that this scale remains unchanged.

which becomes &(xy,X3,t) =exp{— L/ x2+ (x,— axst)?]
X Ak?}. Under a Fourier transformation of both spatial di-
rections, &y, (t)<exp{—[I§+ (ks aket)?J2AK?}. This is
equivalent to a structure that evolves from the initial Fourier
2 2 i -
Eteartse exp— (k§0+ ki0/2Ak=] under a mapping of wave num C. 2D turbulence
Two-dimensional dynamics provides an ideal circum-
k1=K, K3=Kkgg— akt. a7 stance for detecting suppression of turbulence by flow shear.

To understand why, consider a three-dimensional mean flow
In this solution the wave number along the flow is unmodi-with shear given byJ; = a;x;,U,= a,x,,U3= a3Xs, where

fied, while the wave number in the shear direction increaseg, can vary in time but not in space. Incompressibility con-
secularly with time. This corresponds to a continuous destrainsa; so thate;+ a,+ a3=0. This type of flow occurs
crease of the turbulence scale in the shear direction. in ducts with changing cross section. As in the example of
Equation(17) is identical with the results of RD¥ The  the prior section, the tendency of flow shear to enlarge or
linearized evolution equation is solved by Fourier transfor-diminish scales nonlinearly is already apparent in the linear
mation in bothx; andXxs, to yield evolution of RDT. We therefore employ RDT to examine the
5 5 evolution of vorticity,
7t Skpkg ™ aklﬁ_ks kg (18) Jw; |@= wlé’_LJi
ot (9X| (9X| '
and the method of characteristics is introduced by writingyherew=Vx U is the vorticity, viscosity has been assumed
d¢/dt=a¢/ot+(9é/9k;)(dk; /dt). The wave numbers thus 1o pe negligible, and only linear evolution is retained, con-

(21)

evolve according to sistent with RDT. Under the Fourier expansion,
dk dk =3,0,(k,t)exp(k-x), the characteristic procedure yields
d—tlZO; d—::_akh (19 dQ, dk,
W=a191, W=—a1k1, (22)

with solutions given by Eq(17). L where the other two components are governed by identical
The secular increase tkg_cann_ot continue |_ndef|n|tely, equations with the appropriate change of subscripts. It is evi-
because eventually the nonlinearity becomes important. Afyqn+ that along directions in which the flow moves outward

ter several nonlinear interaction tlmeséDklleg. Inthe  f#om the origin (;>0), the vorticity intensifies and the
asymptotic limit e—c, Eq. (14) is singular because the wave number decreases. The opposite is true along directions
highest derivative drops out unless a singular layer developg which the flow moves inward. This is a simple manifes-
in which there are rapid variations @fover x3, allowing  tation of a basic process known as vortex tube stretcHing.

i axzk;~ Dy #°/9x3. In this limit, memory of the initial spa- The outward directed flow velocity increases with distance
tial structure is lost due to nonlinear decorrelation. The strucfrom the origin and thereby stretches vortex tubes whose
ture is governed by the eigenmode of the homogeneouaxes align with the flow velocity. The increase of vortex tube
equation, which describes variation in the singular layerlength requires a decrease of cross-sectional area because the
From Wentzel-Kramers—BrillouiWKB) theory, the lead- vortex volume must remain invariant. The smaller cross-
ing order asymptotic eigenmode structure in the ligit"  sectional area requires an increase in vorticity to maintain the
=ak1Ax§/Dkl—>oo is invariance of circulation(fu-dl=constant, for inviscid
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flow). In a flow with ;= — a3=constant,a,=0, vorticity ~ lation rate. Moreover, in the presence of a source associated
in the x, direction increases while its cross-sectional areaWwith advection of mean potential vorticity, fluctuations in the
parameterized bk,, decreases. This means that the wavepotential vorticity will be suppressed.
numberk; increases. Similarly(Q); and k,; decrease. This
intensification process is a 3D phenomenon. If the turbulence
is 2D, the vorticity is solely in thex, direction. With «,
=0, the vorticity is unchanged. In this case only the scales
are modified. In 3D flows, the intensification of vorticity !ll. SUPPRESSION IN NONIONIZED FLOWS
aligned with the mean flow is a competing effect to the re-p coherent vortices in Navier—Stokes turbulence
duction of vorticity perpendicular to the flow. While there is
suppression in one direction, the signals are dominated by Suppression of turbulent vorticity transport by flow
the amplified components in the other directions, makingshear leads to spatial intermittency in decaying 2D Navier—
suppression of vortical turbulence, even in the long time doStokes turbulenc€:*® Intermittency is manifested in the
main, difficult to detect. emergence of coherent vortices in simulations that initialize
There is, however, a function of the vorticity, known as homogeneous turbulence from a Gaussian random distribu-
potential vorticity, that responds to flow shear in compresstion of vorticity with no mean flow?® As the turbulence de-
ible, rotating, 3D turbulence the way advected scalars reeays, certain eddies emerge as coherent vortices, avoiding
spond in 2D turbulence. The latter is described in BDT,mixing by ambient fluctuations and thus persisting for a large
which treats a scalar quantity whose total concentration ilumber of eddy turnover times. The vortices are patches of
invariant, i.e., is governed solely by advection. In the invari-intense localized vorticity characterized by a particular spa-
ant situation, advection incorporates just two processes, thial profile of a quantity called the Gaussian curvat(E).
straining by mean flow shear and straining by the turbulenceThe GC is the difference of the mean squared shear stress,
These lead to suppression when the rate of mean strainingV/Jx— dU/dy)?+ (dU/dx+dV/dy)?, and the mean
exceeds the turbulent straining rate. Vorticity, in contrast, issquared vorticity(U andV are the total flow velocities in the
not invariant, but has sources associated with compressibik andy directions) The GC is strongly positive in the vortex
ity, rotation, and stretching. These effects can be treatedsore, and strongly negative in the edge. Coherent vortices
along with the straining of the turbulence and mean flowayoid turbulent mixing by suppressing turbulence in their
shear, by considering the potential vorticity, which remainsperiphery. Localized vorticity fluctuations have a flow profile
invariant in the presence of these effects. The potential vory, which flow shear is largest at their edges. Those whose
ticity is Q=p 'w-Vd, wherep is the density,w is the initial vorticity is stronger than that of ambient fluctuations
vorticity, and 9 is the potential temperature, defined as thepgssess an edge flow shear whose shear straining rate ex-
temperature acquired by a fluid parcel under an adiabatigeeqs the ambient turbulent decorrelation rate. This shear

change from a given temperature and pressure to a referengg, syppresses the ambient turbulence and its transport of
pressure. The potential vorticity is an invariant of the mOt'onvorticity, and yields the observed profile of GC. Vortices

. - 1
because its definitiofthrough the factorp ) offsets the whose initial vorticity is comparable to that of ambient tur-

increase of vorticityw when fluid within a filament is com- bulence cannot suppress ambient turbulence. They partici-

Erefsﬁ.d' T.h € mc:ezises to f tvfo rt('jC'ty Z‘?’ a f|[ame1>Lfnt Its Stretc’he;‘.illate in the cascade of energy to the dissipation scale and
y lofting in a stable stratified medium is offset Byd, decay in an eddy turnover time.

which acts_ asa Lagra_ngujan m_arker, adjustlr_wg th_e metric for The interaction of an intense symmetric vortex with the
the stretching of material lines in the fldhe invariance of . . . .
ambient turbulence can be described with a two-time scale

potential vorticity, analysis of the Navier—Stokes equati8rt® The origin of a
polar coordinate system is placed at the center of a vortex.
With a Fourier—Laplace transform of the turbulent vorticity
&(r,0,1),&, = [dtexp(—n)[ddexpnd)(r,dt), the n=0
component is the symmetric vortex ané=1 is the turbu-
holds for a system governed bsu/dt+ (u-V)u+2Qxu lence. Thenfo component e\{o]ves on a slow time scale
=—p Wp-V®, p=p(p,n), dplot+V-(pu)=0, and under the action of turbulent mixing. On the rapid time scale
dnlot+(u-V)n=0, whereu is a 3D flow comprised of the vortex can be treated as stationary. The turbulence struc-

mean and turbulent componendsjs the potential for exter- ture at the edge of the vortex is subjepted to thg strong shear
nal forces,() is the rotation ratey is the specific entropy, Of the vortex, and has an exponentially decaying envelope
andp is the pressurd The potential temperature can be re- MoVing inward from the vortex edge. The enve_lope function
placed with any function of and Eq.(23) still holds. Equa- Nas the same form as that of Ed20), ie. &,

tion (23) is like the scalar evolution equation of BDT in the ~€XH=(2/3)(=iQ/Dy)Y4r—rg)*, where Qg

limit of weak dissipation, i.e., there are only two time scales,=nd(ulr)/ar|, is the differential rotation ofi(r), the vor-

the shear and turbulent straining rates. Hence, we immediex flow, rq is a radial position in the vortex edge, abg is

ately conclude that the fluctuation scale of potential vorticitythe turbulent diffusivity. On the long time scale, the vortex is
in the direction of shear and the correlation time are reducedubject to mixing by turbulence, with an eddy viscosity
when the shear straining rate exceeds the turbulent decorrgiven by

%—FU-V)Q:O, (23
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—in2 2 SQrfl
Dﬁfdy; ( ; |an'y| )( :

r r_ro)l/4(a_ro)3/4

. 1/2
><exp[§< [')Q”> (r—r0)3/2], (5 1>1), (24)

n

whereSis a weakly varying structure function of order unity,
a is the vortex radius, and for the present parameters
=D,/a®Q/,. Due to phase mixing in summing the exponen- ~ B
tial of a complex argument, the effective eddy viscosity is &=
dominated byn=1. Moreover, the real part of the argument x - Zonal Displacement

of the exponential make3, different from zero only within FIG. 1. Contours of constant vorticity fg8-plane turbulence witt{a) no

a narrow exponential layer of thicknes® r(/Qr,1) % at the mean flow, andb) a cosine jet in thex direction with minima at the top and
vortex edge. Stronger vorticdselative to ambient fluctua- bottom and a maximum in the center.

tions) have a larger value of_*, and therefore a smaller

effective viscosity. For turbulence to mix the vortex, it must

diffuse into the vortex, extending the edge layer inward. This  As apparent from the similarity of the 2D Navier—Stokes
process is greatly slowed by the weakness of the eddy visquation and the Hasegawa—Mima equation, flow shear is a
cosity, and its localization within the narrow layer at the vehicle for intermittency and coherent structure formation in
vortex edge. drift wave turbulencé!??

The condition e,=D,/a®Q/<1 is dimensionally
equivalent to the condition that the vortex vorticity exceed
the rms turbulent vorticity, &, /(£2)Y?>1), where the rms
average is computed for an ensemble of fluctuations in the A number of observations of constituent concentrations
vicinity of the vortex and=, is the vortex vorticity atr (aerosols, chloroflourocarbons, ozone, )eto. the strato-
=0. This inequality indicates that an initial vorticity fluctua- sphere show steep gradients coincident with regions of
tion becomes coherent if it lies in the tail of the initial vor- strong horizontal she&rlt is possible that these represent a
ticity probability distribution function(pdf). For decaying suppression of turbulent transport due to flow shear. This
turbulence, fluctuations initially in the core of the pdf, dis- statement is speculative at present because other competing
tinguished by=,/(£%)Y2<1, decay as part of the Kolmog- processes, such as large-scale wave breaking events, must
orov cascade. Fluctuations in the tail of the pa§((£2)Y2  also be assessed, and source and sink configurations of the
>1) decay at a far slower rate, causing the tail probability toconstituents and the turbulence itself must be determined.
become enhanced with time. A Kolmogorov cascade with ndne of the most striking examples is that of aerosol injected
coherent vortices implies a Gaussian pdf. Thus, an initiainto the tropical stratosphere by volcanic eruptiéhdhe
Gaussian pdf will evolve so that its core remains Gaussia@erosols are quickly spread along the equator by the equato-
while its tail develops an enhanced non-Gaussian featureial jet, a zonal flow in the lower part of the stratosphere.
This type of evolution is observed in intermittent turbulence.North-south spreading extends to abat0° latitude where

The observed GC profile in the region of a coherenta sharp poleward gradient of aerosol concentration forms.
vortex directly indicates that the shear suppression criteriofhis gradient is closely aligned with the flanks of the jet, a
es<1 is satisfied. The GC of the vortex flow i€, region of strong flow shear. The gradientst20° persist for
=r2n"20/?—E2, where = is the vorticity of the vortex, Yyears after a major volcanic eruption. Strong constituent gra-

- Meridional Displacement

B. Quasigeostrophic turbulence

while the total GC is dients also appear at the edge of the polar vortices, again a
region of strong flow sheat. Moreover, fluctuations in the
r2Q/2 wind velocity itself appear to be smaller in the region of
CT:—Z”—(E2+<§2>), (25)  shear than on either side, where the mean wind speed profile
n is flatter!?

In simple models of geostrophic turbulence it is possible
The turbulent vorticity is included in Ed25) to account for to specify what conditions are present and thus unequivo-
the total squared vorticity. It is of importance neara, cally determine the role of flow shear. Tl#eplane model,
where the vortex vorticity is zergThe vanishing of the vor- Eq. (5), is ideal because the physics it contains is analogous
tex vorticity at the vortex radius is implicit in the stipulation to that of plasma models while it applies to large-scale mo-
that the vortex is localizeflThe turbulent shear stress is not tions in the stratosphere. Two studies have documented sup-
included in Eq.(25) because it is dominated by the vortex pression of turbulenéé€ and transpoftin regions of strong
shear stress in the edge, and fluctuations are small near theean flow shear. In these studies a mean zonal flow with
center. The observed negative GC near the centers of theeridional shear was specified as a model for flows such as
coherent vortice's reflects the fact that?Q/>n~2 vanishes the equatorial jet and polar winter vortices. For computa-
there. At the edgeZ ? vanishes and positive GC implies that tional simplicity, the mean flow profile was a one-period
a?Q}n?>(£?)~D2a *, reproducinge < 1. sinusoid, allowing periodic boundary conditions in both
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zonal and meridional directions. The turbulence was initial-secular growth of wave number in the direction of the shear.
ized and allowed to decay, or driven by an external force. IriThis wave number growth saturates nonlinearly after a non-
the simulations, turbulence is not driven by the mean flowlinear interaction time at the value predicted by BDFor
becauses is chosen sufficiently large relative to the secondthe wave number along the flow there is no change in mag-
derivative of the mean flow to make the flow stable. Thenitude in the short time regime, indicating that there is no
largest scales of the turbulence were smaller than the meridevolution to saturate. This provides the rationale for an as-
onal scale of the mean flow by a factor 6. This turbu-  sumption implicitly made in BDT that the scale along the
lence is representative of fluctuations created by wave brealffow is not modified by the flow shear. The restriction to 2D
ing, or driven by other processes, such as waves propagatirttynamics eliminates vortex tube stretching, whose ampilifi-
upward from the troposphere. cation of vorticity in directions along the flow and along the
A reduction of turbulent vorticity where the zonal mean shear competes with suppression in the other direction. How-
flow has maximum shear was observed in Ref. 5, but never, an invariant function of vorticity, the potential vortic-
explanation was offered. The shear suppression criterion, Edty, responds to shear in 3D compressible flows the way in-
(12), was not a part of the analysis or interpretation, and it isvariant scalars do in 2D flows.
difficult to determine how strongly it was satisfied. In Ref. 6 Two nonionized flows that exhibit suppression of turbu-
parameters were chosen to makér, as small as 0.1 in the lence by flow shear were considered. In 2D decaying
region of maximum shear. Figure 1 shows contours on conNavier—Stokes turbulence, the suppression of ambient turbu-
stant vorticity for two cases, one with no mean flow initial- lence by the shear flow at the edge of large amplitude vor-
ized in the simulation, and one with a cosine jet yieldingticity fluctuations allows them to escape mixitit}® They
75/ 7.=0.1 in the region of strongest flow shear. There is aemerge as the coherent structures that account for the spatial
near absence of turbulence whetg r,<1 and strong tur- intermittency and non-Gaussian nature of the flow. Quasi-
bulence elsewhere. For the case with no jet the turbulence eostrophic turbulence in @plane satisfies the three condi-
homogeneous and isotropic. Transport can be examined faions for suppression of turbulence by flow shear, with rota-
the B-model of Eq.(5) by using tracer particles and calculat- tion providing stability and two dimensionality. Simulations
ing an effective spatial diffusivity from the separation of of externally driven turbulence in a cosine jet show suppres-
pairs of tracer particles as a function of time. The diffusivity sion of both turbulence and transpdft.This behavior is
is found to be minimum whereg/ 7. is minimum. The dif- speculated to play a role in transport barriers in the
fusivity decreases as the jet amplitude is raised for fixedstratospheré.
mean flow scale length. At;&ve :;1 critical amplitude, however,
the jet becomes unstable<Q/dy<>B), and the diffusivity
rises abruptly. Above the instability threshold diffusivities in ACKNOWLEDGMENTS
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